FICHE Méthodes 1 « Rédaction des exercices »

http://www.capneuronal.fr/

Aide à la rédaction des exercices :

Comment rédiger un calcul ?

Exemple : Calculer la masse de sel m_{sel} nécessaire pour fabriquer une solution salée de volume V_{sol} = 150 mL et de concentration en masse de sel Cm = 18,0 g/L

J'annonce	J' <u>annonce</u> ce que je vais faire
FORMULE	Je respecte les notations du texte m_{sel} et Cm Je donne un nom au variable V_{sol} J'écris la <u>formule</u> du cours que je connais
EXPRESSION LITTERALE	Je n'hésite pas à mettre des liens entre les étapes de mon raisonnement : donc, ⇒,alors Je donne l' <u>expression littérale</u> , c'est-à-dire j'exprime l'inconnue en fonction des autres grandeurs
Détail des calculs	J'écris le <u>détail de mes calculs</u> en respectant les unités <u>sans écrire ces unités</u> dans le calcul.
Résultats	Je respecte les <u>chiffres significatifs</u> dans le résultat. Je n'oublie pas <u>l'unité du résultat</u> en cohérence avec l'ensemble des unités rencontrées

Connaître la formule : Quelle est la formule de la concentration massique Cm du sel en fonction de ma masse de sel m_{sel} et du volume de la solution Vsol?

C_{m}	=	$m_{sel} \times V_{sol}$	
\sim m		insel ~ v sol	

$$Cm = \frac{V_{sol}}{m_{sel}}$$

$$Cm = \frac{m_{sel}}{V_{sol}}$$

$$Cm = m_{sel} + V_{sol}$$

Formule

1

2

3

4

Parmi ces 4 formules, choisir la bonne en justifiant votre réponse

Coup de pouce :

- Que fait la concentration C_m d'un sirop de menthe lors que l'on ajoute de l'eau ? (C'est-à-dire quand le volume V_{sol} augmente)

- $1 \text{ salade} + 3 \text{ salades} = \dots$
- 1 salade + 2 carottes =

Exemple 2 « respectons la rédaction des calculs »

Calculer le volume d'eau V_{sol} nécessaire pour fabriquer une solution salée contenant une masse de m_{sel} = 40 g de sel et de concentration en masse de sel Cm = 200 g/L

Exemple 3 « respectons la rédaction des calculs »

Calculer la concentration en masse de sel Cm' si l'on dissout une masse de sel m' $_{sel}$ = 12 mg dans un volume V'_{sol} = 150 mL

