

Lycée Joliot Curie à 7	CHIMIE - Chapitre 2
Activité expérimentale n°3	

Vocabulaire:

Classe de Seconde

19/09/2017 Date

« Etude d'un mélange mystérieux ...»

Nom: Nom:

Objectif: Élaborer et mettre en œuvre un protocole d'extraction à partir d'informations sur les

Compétences travaillées (capacités et attitudes) :

> ANA: formuler une hypothèse; proposer un protocole expérimental.

> REA : réaliser un dispositif expérimental ;

> VAL: exploiter et interpréter des observations.

ANA	REA	VAL	20

Phase liquide, phase solide

Hétérogène / homogène Miscible /non miscible

Ménisque

Solution limpide/solution colorée

plus / moins dense

1ère mission : Vous avez sur vos paillasses un bien curieux « mélange ». Votre mission est de savoir le refaire. Pour cela, il vous faut identifier les liquides qui constituent ce mélange en expliquant pourquoi ces liquides occupent-ils des niveaux différents. Il est bien sur interdit de le goûter et de sentir

Première étape : Travail en binôme Redessiner et décrire ce mélange, en utilisant le vocabulaire appris au collège. Attention chaque détail compte!

Deuxième étape : Travail en binôme en vous aidant des indices ci-dessous.

Comment identifier ces 3 liquides? Quels sont les indices susceptibles de vous aider ? Quelles sont les expériences à réaliser? Quelles sont vos propositions?

Appeler moi après avoir établi votre stratégie. Faire un compte rendu en expliquant votre raisonnement et en s'appuyant sur des schémas et un vocabulaire précis.

Indice 1 : On donne la définition de la masse volumique d'une substance pure. Cette grandeur se note ρ (lettre grecque qui se prononce rho).

Elle se calcule à l'aide de la relation $ho_{liq}=rac{m_{liq}}{V_{liq}}$: où mliq est la masse de la substance homogène occupant un volume V_{liq} . Elle s'exprime le plus souvent en g/mLou q.L⁻¹ ou en kq.m⁻³ (unité légale) suivant les unités choisies dans la formule.

Indice 2 : La densité d'un liquide d_{liq} est définie en comparant sa masse m_{liq} à celle de l'eau m_{eau} pour un même volume V. La densité ne possède pas d'unité. $m{d}_{m{liq}} = rac{m_{liq}}{m_{om}}$

Indice 4 : Quelques valeurs de masses volumiques :

Liquides	Eau	Alcool	Pétrole Ether	Glycérol	Acide éthanoïque	Huile
ρ (g/mL)	1,0	0,78	0,75	1,26	1,05	0,92
d _{liq}	1,0	0,78	0,75	1,26	1,05	0,92

Matériel disponible :

Balance de précision	Tubes à essais	éprouvette graduée	Pipette Pasteur	Bécher

Troisième étape : travail en binôme.

Mélanger le tube contenant ce mélange. Observer et proposer une interprétation sur votre compte rendu, en utilisant un vocabulaire approprié. Quels nouveaux tests doit-on faire et quels produits pouvez-vous éliminer de vos propositions précédentes. Appeler votre professeur pour validation.

Quatrième étape : Comment réaliser ce mélange ?

Après avoir détaillé cette manipulation sur votre compte rendu (à l'aide d'un schéma par exemple), appeler votre professeur pour vérification. **Préparer ensuite le mélange dans un tube à essais propre**.